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1 Introduction

Wave-induced bed responses in the near-shore region, par-
ticularly the region above the subsurface still water tabie
of great interests to civil engineers, coastal engineexsngr-
phologiests, and others. These responses including gnatad

Extreme wave runup and drawdown in the nearshore region can flow, bed displacement and stress, and pore water pressige ha

lead to soil failure in the form of severe erosion, liquei@ct or
slope instability. However, the physics of the nearshogéreis
difficult to simulate numerically due to the greatly varyitige

influences on various processes such as sediment tranaport,
well as chemical and biological transfer in the near-shegéon.
Fundamental understanding of these processes are alstabf vi

scales between the four governing processes: loading and un importance to the safety of coastal slopes and coastabinfic
loading caused by wave runup and drawdown, propagation of tUres.

the saturation front, pore pressure diffusion, and soikotida-
tion. Such processes are also difficult to simulate exparime
tally via model-scale wave tank studies due to the inabttity
satisfy all the similarity requirements for both the wave dine
porous media in ag.environment. Hence, the goal of this work
is to perform a 1D study using a multiphase model to describe
the transient responses of the species saturation, podepfies-
sure, effective stresses, and skeleton deformation. Reard
shown for three simulations: (1) full-scale simulation) {220
laboratory-scale simulation without scaling of the pormesdia,
and (3) 1:20 laboratory-scale with consistent scaling efghil
permeability. The results suggest that the scaling of poroe-

Coastal engineers and geomorphologiests have long been in-
terested in this region. Horn [1] reviewed the researclvitiets
toward improving the understanding of beach water-tabl® an
swash interactions, as well as their effects on sedimenspiart
and beach accretion / erosion. Turner and Masselink [2]estud
the influence of infiltration and exfiltration on cross-sheeeli-
ment transport via field observations and numerical sirmariat
Nielsen and Perrochet [3] experimentally studied the ¢dfet
capillary pressure on water-table dynamics. Li and Bariy [4
studied the groundwater responses under wave motions with a
coupled numerical model. The waves are modeled with non-
linear shallow water equations, the solution of which pdeg

dia between the pore fluids and soil skeleton has a significant boundary conditions to the by the Laplace equation desuagibi
influence on the transient response of both the vadose and thethe groundwater flow. The only field variables present in this

phreatic zones.

model are water height and velocity for waves and hydraearh
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for the groundwater flow, while the bed displacement and pore
pressure fields are not modeled, which is a typical methagolo
utilized by coastal engineers.

On the other hand, civil engineers are interested in thistat
and dynamic responses of the soil under various loadings. Th
displacement and stress of the soil are of primary intesiste
soil (or rock) serves as the foundations and supports fort mos
of the buildings, bridges, and other infrastructures. Tierac-
tions from the structures, the soil skeleton, and the poidsfiu
(water and/or air) are very complex and the different phalsic
processes in the interactions are coupled and highly neealin

In the past few decades, much effort has been made toward ad-

vancing the fundamental understanding of the interactims
tween surface and subsurface flows. Biot [5] laid the fouindat
for the mechanics and dynamics of fluid-saturated porous me-
dia by extending the classical elasticity theories. Pséy®, 7]

was among the first to formulate the soil dynamics problem in
the framework of porous media and analyzed the nonlinear tra
sient soil responses by solving the equations with finitenelat
methods. Similar efforts towards improving the understagdf

the phenomena were made by Zienkiewicz and coworkers [8, 9].
In these models, the soil are assumed to be fully saturatéd wi
fluid. Field variables include pore fluid pressure and saleston
displacement. Meiri and Karadi [10] developed a finite eletne
model to describe the two-phase flow of gas and liquid. With
this numerical model, a gas percolation problem in the cdnte
of oil production was solved. The model was one-dimensijonal
with the interactions between the fluids (i.e. capillarygstee
and relative permeability) and the compressibility of thed$
considered. However, the deformation of the soil skeletas w
ignored, and the porosity was thus constant. The solulaifigir

and the volatility of water were neglected as well. Sumniagz
previous efforts, Zienkiewicz et. al. [11] developed a &rite-
ment model to solve fully saturated soil problems. Zienkoew

et. al. [12] extended the formulation for unsaturated peotd by
modifying a “combined fluid/solid compressibility” term. h&
unsaturated formulation was used to simulate the collapgeo
San Fernando earth dam in 1971. Other notable works consider
ing the coupling of unsaturated flow and geomechanics irclud
those by Rahman and Lewis [13] and Schrefler and Scotta [14],
among others.

The difficulties underlying the modeling of unsaturated flow
problem in deformable porous media are mainly associatéd wi
the non-linearity introduced by the relative permeabitibd the
capillary pressure, and the complex interactions amongithe
cesses with a wide range of times scales. Although many re-
searchers have developed numerical models to simulatenthe u
saturated flow problems, the fundamental physics of thelenob
is still not fully understood.

2 Objective

The objective of this work is to investigate the dynamicinte
actions between the vadose and the phreatic zones duriak-bre
ing solitary wave runup and drawdown over a fine sand beach.
More specifically, the goal is to advance the understandfng o
the consequence of improper scaling of the porous mediagluri
typical 1g wave tank studies of wave-soil interactions.

3 Mathematical Formulation

The problem of bed response under wave loading is formu-
lated in the framework of porous media theory, where the con-
stituents (sand grains, water, and air) are assumed to hednd
ual continua, all interpenetrating each other and occuptlie
whole domain, each being regarded as a phase. If the indér-gr
pores are almost completely occupied by one fluid, and other fl
ids do not play significant roles, the medium can be modeled as
saturated porous medium. In this case, problem is formiate
terms of soil skeleton displacements @nd pore pressurep)
Otherwise, if two or more fluids jointly occupy the inter-gra
pores, the mobility of the pore fluids may interfere with each
other and capillary pressure may be important. In such ctses
medium needs to be modeled as an unsaturated porous media,
i.e., in addition to skeleton displacements and pore pressthe
saturation for each of the speci&¥)(needs to be described. The
two formulations are presented as follows.

3.1 Saturated Saoll

The soil skeleton and the pore water in the sediment bed are
modeled in the framework of poromechanics theory [15]. The
soil depositis assumed to be fully saturated (with eitheewar
air). The following equations are solved:

0-0+[(1-@)ps+@p]b=0 Yy
dps do
(PW'FD'CH‘pfa—O (2)
d(p_ s 1 dpf
and mass flux of the pore fluid
q=psq" 4)

where fluid volume fluxq" is modeled according to Darcy’s law:

—h'[DDf—be] (5)

¢
q Mt
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The quantitied andN are defined as [15]:

1 b-—g
g 6
N~ K (6)
K
b=1-—
Ks

whereg = total stress tensor of the mixtureg;= Lagrangian
porosity of the soil;gy = initial porosity; ps andps: solid and
fluid density;b = body force (gravity in this study)ps = pore
fluid pressurey® = solid velocity;k = intrinsic permeability ten-
sor of the soil skeleton (for isotropy it is replaced with alsc
K); uf = dynamics viscosity of the pore fluith,= Biot’s coeffi-
cient; K andKg: bulk moduli of the solid matrix and the grains,
respectively.

For porous media with saturated fluid (the pores are com-
pletely occupied by one fluid), the change of fluid densityeis r
lated to the change of pore pressure:

der =Ctdps

Pt @

whereCs is the compressibility of the pore fluid.

The solid stresses and velocities are expressed in terms of

solid displacement field® as follows:

0=0°—bpsd (8)
g°=C:¢° 9)
§S = D()US (10)
ous
S _ _
Vo= A (12)

whereC is the constitutive tensor (fourth-order); The symbol “”
denotes the contraction product of two tensets; strain of the
skeleton;Jyu® = (Ou®+u®)/2 is the symmetric part of tensor
OusS; 8 is second order unit tensopy is initial fluid pressure;
Equation (8) shows that the total stress of the mixtanei§ de-
composed into effective stress acting on the soil skelet®rapd
pressure carried by the pore fluid:{.

3.2 Unsaturated Soil
With the presence afp, fluid phases, extrang — 1) satura-
tion equations need to be solved in addition to the linear mo-

mentum balance in Equation (1) and the total mass balance in

Equation (2). With the presence of several fluids in the pdhes
apparent fluid density is written as

Np

pr=Y puSh 12)
a=1

wheren,, is the number of fluid phases; the subscrifi the fluid
phase index, which could be eithefliquid/water) org (gas/air)

in this study. The momentum balance is the same as in Equa-
tion (1). The fluid mass balance takes the same form as in Equa-
tion (2). The first term is now written as follows to accommizda
the presence of several fluids:

dps

ai (13)

d|& oo dpP
= at Lzlpa%] = LzlpanCa‘| at

which is an approximatiorP is the global pressure. In the sec-
ond term of Equation (2), thtotal mass fluxg is how defined
as

Np Np
q= Zpaaa:—<z paka>k'[DP_5b] (14)
a=1 a=1

whereqy is the volume flux of phase; p is defined as

—: 2(1 1pcxk(1 15
g Zcx 1p0‘k0 ( )
and
Kra
= — 16
Ka m (16)

is the mobility of phaset, wherek; is the relative permeability
of phasea. The saturatiorg, of phasea is obtained from the
saturation equation:

d _ d
¢ (Pa%) +D'(puCIu)+pan—(p:0 (17)
dt dt
where the phase max fluxes are expressed as follows:
— paka
Paba = (18)
kaB
k- | = PMe [RS8 1 (pg — pg)b
+ Z Paks + (Pa—Pp)
;3 1, B;éu Bkﬁ
WherePS’B is the capillary pressure between phasendp. Only
(np — 1) saturation equations need to be solved because of the

constrainty ;” ; Sy = 1.
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In the equations above, capillary pressure between the order to correctly scale pressure diffusion and consatiddime

phases is ignored, i.ePgB = 0, and the effect of capillary pres-
sure will be investigated in future studies. As a conseqgeghe
pressure for different phas@g are all equal to the global pres-
sureP. The pressure is denoted pg hereafter, op when no
confusion is caused. The relative permeability need moget
close the system. In practice, it is formulated as empificad-
tions of the saturatiof,. The Corey’s curve is adopted for the
relative permeability (Corey, 1954):

Ky =& (19)

kg =(1-9%(1-%) (20)
4 S-S

with S= m (22)

whereS, = residual saturation for the liquid (watef;r = resid-
ual saturation for the gas (air§ = normalized saturation; The
residual saturation is the threshold saturation for a phas®av
which this phase is not mobile.

4 Numerical Methods

The fully coupled equations of displacemeni¥ &énd pres-
sure () are solved simultaneously with a stabilized Galerkin fi-
nite element method. The saturation equations are sohiad us
vertex-centered finite volume method with an upwinding sthe
[16] and are coupled to pressures and displacements wittga st
gered approach with iterations. Other details of the albors
are discussed in Refs. [17,18]. A finite element / finite vadum
analysis prograrDynaFl owis used for the simulations [19].

5 Problem Definition
When wave-soil interaction problems are studied in labo-
ratories, it is often difficult to scale the sand particlendéers

since the change of particle diameter may lead to changes of

other properties such as cohesion, particle weight, anticfzar
settling velocity. As a result, soil experiments often hawde
conducted with improperly scaled sand (soil). It is impnott
assess the effect of improper scaling of the bed materiahen t
transient responses.

In this section, simulations are conducted to compare the

response of a full-scale model to a laboratory-scale modél w

a geometric length scale ratio of 1 : 20. The model-scale wave .

simulations are assumed to satisfy Froude number sinyilard

thus the ratio of time scales between the model and the proto-

scales. The laboratory-scale simulations are referred ttases
(2) and (3), respectively Details of the scaling issues aee p
sented in Ref. [20].

In both laboratory-scale case studies, it is assumed tkat th
porosity and the Young’s modulus of the soil, and the comgpres
ibility and viscosity of the fluids are the same between the al
laboratory-scale models and the prototype.

In all the simulations that follows, the initial saturatios
S = 95% in the region below the initial water table (phreatic
zone) and zero above the water table (vadose zone). The ini-
tial pressure is atmospheric 1@a) at the top surface and the
pressure distribution is hydrostatic elsewhere in the Etran
domain.

Body force (gravity) is considered in all the simulation&.eT
displacements are initialized as follows: the domain i fafs
lowed to consolidate under gravity with the presence of the h
drostatic pressure from the initial water column until tigstem
reaches a steady state, and then the displacements of the who
soil domain are set to be zero. Therefore, the initial seessd
strains are in equilibrium state in the whole domain. Theatr
ment ensures that any displacements obtained afterwadisiar
solely to wave actions, and so are the stress and strairtivaga

The top boundary is subject to the surface water pressure
depending on the loading type, while the effective streasése
top boundary are kept zero. The pressures at the bottom bound
ary are fixed such that the initial hydrostatic pressurebésbil
column are balanced exactly. The bottom boundary is fixeld wit
no displacement. The saturation is 100% at the top surfae@wh
ever there is external pressure (other than atmospheissyme)
applied at the top. The saturation is fixed at 95% at the bottom
surface. All simulations are conducted with 200 two-node el
ments of uniform size unless noted otherwise. Grid converge
studies are conducted and good convergence has been abserve
for all the cases.

To ensure the simulations are conducted in appropriate time
domains and with suitable time steps, the time scales oflthe a
the cases are first estimated as presented in Table 1. THesresu
are presented in Table 3, based on which the simulation time
duration and time step size are determined. The estimatex$ti
also facilitates interpretation of the results. Physiaaigmeters
used in the simulation are presented in Table 2. More details
about the derivation of the characteristic time scales egoind
in Ref. [20].

All the simulations shown below are conducted using the un-

type is 1 :v/20. Three scenarios are examined: (1) the full-scale saturated formulation presented in Section 3.2. Howevieenw

model; (2) 1:20 laboratory-scale model with the same soihas
the prototype; and (3) 1:20 laboratory-scale model withsthié
permeability is scaled according Kgrototype/ Kmodel = 20%2, in

the saturation propagation is negligible, the unsaturtdedu-
lation is equivalent to the saturated formulation in Sect®ol,
which is easier for theoretical analysis.
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Table 1.

Expressions for the characteristic time scales in unsaturated

flows. H = initial wave height; d = offshore still water depth; 6 = bed
slope; YL = dynamics viscosity; @ porosity; L = soil column depth; k=
permeability Cy; = compressibility of the soil matrix. Refer to Figure 1.

The bottom is the origin of X axis.

Physical process Time scale
3H03q02
Wi ti =
lave propagation ow @nd./g
Saturation front propagatiop Tes = op L
4 kdp/dx
L%@uC
Pressure diffusion pore fluid Tep = qlii !
_— L?
Consolidation Tee = I-;Cm

Table 2. Common physical parameters used in all the simulations (un-

less noted otherwise).

Parameter

Quantity and unit

Gravity constant (g)
Young’s modulus of skeletork(
Poisson’s ratio of skeletow)

Density of sediment/soil grainpd)

Intrinsic permeability of skeletork)

Porosity of sediment/soitg
Compressibility of pure wate)
Compressibility of airCy)
Density of water )

Density of air p5)

Dynamics viscosity of watei()

Dynamics viscosity of airj)

Residual saturation of liquid/wateg()

Residual saturation of gas/af)

10 m/seé

1.5x 10° Pa

0.2

2650 kg/m®
1.5x 10 1 m?

0.4
46x107°m?/N
1.0x 10°°m?/N
1.0x 10°kg/m?3

1.0 kg/m?3

1.0x 103 kg-m/sec
1.8 x 107 °kg-m/sec
3%

3%

6 Results
6.1 Full-Scale Simulation

at the shoreline and then climb up onshore in the form of a.bore
The propagation of the wave is modeled with a hybrid numeérica
model which solves the nonlinear shallow water equations fo
the post-breaking region and the Boussinesq equationséor t
pre-breaking region [21]. The time series of water deptthat t
location of the soil column is obtained from numerical siexul
tions with the hybrid model. The load applied on the top of the
soil column is assumed to be the hydrostatic pressure frem th
water column. The simulation results for the full-scale rlad
presented in Figure 2 (a), with the pressure and time nozexhli
as explained in the figure caption.

l l Xx=20m =
S=0 S:OX 1m
X=18m Xx=0.9m
g
X S=§ x| S=§
@) @)

(a) (b)

Figure 1. Schematic setup of the simulations. (a) full-scale model, case
(2); (b) laboratory-scale model, cases (2), and (3).

6.1.1 1:20 Model-Scale Simulation without Scal-
ing the Soil  The result for the laboratory-scale model sim-
ulations without properly scaling the soil permeabilitage (2))
is presented in Figure 2 (b). Comparing the model-scale pore

Consider a soil column on the shore-face of a beach with pressure response shown in Figure 2(b) with the full-scate p
a constant slope (1:15) as shown in Figure 1. For the fulesca pressure response shown in plot (a), it can be seen thattie si
problem, the soil column is located 30 m onshore. The depth of lation without scaling the soil permeability in case (2)ag\qual-
the soil column is 20 m with a vadose zone of 2 m. The beach is itatively incorrect predictions, i.e. the pressure dedan@ the
subject to a solitary waves of with an initial height of 12 maat

still water depth ofd=20 m, which would break before arriving

5

depth is much larger and faster than the prototype simulatio
The fundamental differences between the results are theamec
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nisms causing the pressure variation. In the prototype (p)9,

the pressure variations at the bottom two locations Q.5L and
x=0.879_, or 10 m and 18.5 m, respectively) are dominated by
the “squeezing effects” as a result of the pore space cdigrac
while that at the top locatiorx(= 0.979._, or 1975m) is dom-
inated by pressure diffusion, which is confirmed by the dligh
delay of the pressure compared to the input pressure at phe to
(x =1L). In the laboratory-scale model results without scaling
the soil permeability in plot (b), the “squeezing” effeceem to
dominate at all the locations. However, since the permigabil
is much larger than the properly scaled value, the drainage ¢
dition is better than that in the prototype, and thus the qunes
increase caused by the loading is not as large as in the ppetot

6.1.2 1:20 Model-Scale Simulation with Porous
Media Scaling Preserving Pressure Responses Fur-
ther investigations are conducted to explore the postibiff
achieving perfectly scaled pore pressure responses bysitigpo
a permeability scaling ratio alone. As mentioned aboveyéeo
number is preserved for the model-scale wave experimemds, a
the time is scaled according to:

tprototype/tmodel = \/)_\ (22)
whereA is the length scale ratio.

To obtain properly scaled pressure and effective responses
the time scale of the porous flow should also be scaled as ia-Equ
tion (22). This is achieved by choosimgk] = A%2, according
to the expressions for the time scales in Table 1. To veriéy th
analysis above, a simulation is conducted for a laborasogle
case with the permeability scaled according to the ratid, i.e.
Kmodel = 1.5 x 10711/20%2 = 1.67 x 1013 m?. The result is
presented in Figure 2(d). It can be seen that the pore peessur
responses are scaled perfectly. The effective stressisedded
perfectly, but is not shown here due to space limitations.

In summary, the analysis above demonstrated that using the
same soil in the experiment as in the prototype does not give
qualitatively correct results. Scaling soil permeabiktgccord-
ing to A%/2 gives perfectly scaled transient pressure and stress
responses, which also confirms that the mechanisms regp@nsi
for the transient responses in the porous media under extern
loading are pressure diffusion and consolidation.

It should be noted, however, the analysis shown above rep-
resent a simplified and idealized problem. In reality, itificllt
to change the soil permeability while keeping the porosityg a
Young’s modulus constant. Furthermore, other responsdsasl
saturation propagation rate and displacement are nottsped@-
erly since other material properties are not scaled prgpénl
addition, the analysis above assumes that the experimeonhis
duced in a one-gravity acceleratiorgflenvironment. By con-
ducting experiments in centrifuges, acceleration envirents

(@)
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2 25 3 4
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2 25 3 35
Normalzied time (l‘)

(d)

. .
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.
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. . . . h
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. . .
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o

3

Figure 2. Time series of the normalized pore pressures at three lo-
cations along a soil column during the first solitary wave runup and
drawdown. (a) Case (1): prototype with soil depth L = 20 m. (b)
Case (2): laboratory-scale model with the same soil as in prototype; (c)
Case (3): laboratory-scale model with properly scaled soil permeability
k=1.67x 1013 m2. L = 1 m for the laboratory-scale models (b) and
(c). The pressure is normalized as p* = p/pwgH, where H is the off-
shore wave height. The time is normalized as t* = t1/g/d, where d is
the initial offshore still water depth.
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greater than g, can be achieved and thus different scaling re-
lationships are possible. However, conducting experiment
centrifuges significantly increases the operation costs the
complexity of the experiments. Furthermore, the scaledef t
experiments that can be conducted on centrifuges are sbriou
limited compared to those in conventional wave flumes.

7 Conclusion

Unsaturated flow in porous media is a multi-physics prob-
lem with greatly varying time scales. It is essential to d®o
proper time scales corresponding to the physical phenothaha
needs to be capture in order to correctly model the phenomena
Simulations suggest that it is essential to correctly sttedeper-
meability of the soil in the experiments where the soil resss
are studied. Improper scaling of the soil permeability nmesgdl
to qualitatively incorrect experimental results, whiclostd not
be extrapolated to prototypes. Via time scale analysisrage
ability scaling relation to achieve perfectly scaled tianspore
pressure responses is proposed, which may be valuabletioe fu
large-scale experiments studying wave-soil interactions
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Table 3. Setup and approximate characteristic time scales of the cases
simulated in this study, estimated based on the formulas in Table 1 and
the physical parameters in Table 2.

Case number and Q) (2) 3)

description Prototype Lab scale Lab scale Unit
Permeability 15x1011 15x10 167x10 8 m?
Offshore wave height 12 0.6 0.6 m
Soil column height 20 1 1 m
Vadose zone height 2 0.1 0.1 m
Wave loading 55 10 10 sec
Water penetration 4500 230 20000 sec
Water pressure diffusion 10 0.03 2.4 sec
Air pressure diffusion 2000 5 430 sec
Consolidation 160 0.5 36 sec
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